
Improvement of electron beam quality in optical injection schemes
using negative plasma density gradients

G. Fubiani,* E. Esarey,† C. B. Schroeder, and W. P. Leemans†

Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
�Received 27 July 2005; published 6 February 2006�

Enhanced electron trapping using plasma density down-ramps as a method for improving the performance of
laser injection schemes is proposed and analyzed. A decrease in density implies an increase in plasma wave-
length, which can shift a relativistic electron from the defocusing to the focusing region of the accelerating
wakefield, and a decrease in wake phase velocity, which lowers the trapping threshold. The specific method of
two-pulse colliding pulse injector is examined in detail using a three-dimensional test particle tracking code. A
density down-ramp with a change of density on the order of tens of percent over distances greater than the
plasma wavelength leads to an enhancement of charge by two orders in magnitude or more, up to the limits
imposed by beam loading. The accelerated bunches are ultrashort �fraction of the plasma wavelength—e.g.,
�5 fs�, high charge ��20 pC at modest injection laser intensity �1017 W/cm2�, with a relative energy spread
of a few percent at a mean energy of �25 MeV, and a normalized root-mean-square emittance of the order of
0.5 mm mrad.
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I. INTRODUCTION

Compared to standard radio-frequency �rf� linear accel-
erators, advanced accelerators using plasmas can produce
much higher acceleration gradients, in excess of 10 GeV/m,
without the limitation of breakdown. In a plasma, the wave-
length of the acceleration field is the plasma wavelength �p
=2�c /�p or �p�m��3.3�104�n0�cm−3��−1/2, where n0 is the
plasma density, c is the speed of light, �p= �4�n0e2 /me�1/2 is
the plasma frequency, me is the electron mass, and −e is the
electron charge. For example, a laser wakefield accelerator
�LWFA� �1� in the standard regime typically has a density of
the order of n0�1018 cm−3 and a plasma wavelength of the
order of �p�30 �m. If a monoenergetic electron bunch is
injected into a wakefield such that it is accelerated while
maintaining a small energy spread, then it is necessary for
the bunch to occupy a small fraction of the wake period, on
the order of a few femtoseconds. This requires femtosecond
accuracy in the injection process, which is problematic for
current state-of-the-art photocathode radio-frequency elec-
tron guns.

Several injection mechanisms of plasma electrons into the
accelerating wake have been described that rely on self-
trapping. In a homogeneous plasma, self-trapping can occur
by driving the wake to the wave-breaking limit in the self-
modulated LWFA regime �2,3�, in the highly nonlinear blow-
out or bubble regime �4,5�, or in the two-dimensional wave-
breaking regime �6�. In an inhomogeneous plasma, a gradual
density down-ramp will eventually lead to wave breaking
some distance behind the drive beam, due to decrease in the
wake phase velocity on the ramp �7,8�. Alternatively, a
strong drive pulse can lead to trapping at a sudden disconti-
nuity in the plasma density �9�.

In an effort to improve the trapped bunch quality over
single-beam methods, several injection methods have been
proposed that utilize additional injection laser pulses. The
motivation behind using additional injection pulses is to have
more control over the injection process, provided the drive
pulse does not create a wake of sufficient amplitude to self-
trap background plasma electrons �so-called “dark-current
free” powering of plasmas has recently been observed in a
channel guided LWFA �10��. The injection pulse can be used
to turn on and off the injection process; e.g., injection only
occurs when the injection pulse intersects with the wake. The
ponderomotive force associated with the envelope of a single
injection laser pulse can be used to boost the electron mo-
mentum and phase such that they become trapped in the
wakefield �11–13�. Typically, ponderomotive injection meth-
ods require high intensities I�1018 W/cm2 �corresponding
to a normalized laser strength a�8.6�10−10���m�
I1/2�W/cm2��1� in both the pump and injection laser pulses.

Alternatively, the slow phase velocity beat wave �interfer-
ence term� produced by the collision of two counterpropa-
gating �or intersecting at an angle� lasers can be used in
either a three-pulse �14,15� or two-pulse �16–19� configura-
tion. In the original colliding pulse injector �CPI� concept,
three short laser pulses were used for electron injection
�14,15�. The pump pulse generates a plasma wake through its
ponderomotive force, as in the standard LWFA. The two in-
jection lasers—one pulse propagating in the forward direc-
tion behind the pump laser pulse and the other in the back-
ward direction—collide at a predetermined phase of the
plasma wake. During this collision, the beating of the injec-
tion laser pulses generates a beat wave with a slow phase
velocity that kicks a subset of the background plasma elec-
trons which can be trapped and accelerated. A simplified CPI
configuration was proposed and analyzed by Fubiani and co-
workers �16,17,19� that uses only two laser pulses with par-
allel polarizations: an intense pump pulse for wakefield gen-
eration and a single counterpropagating �or propagating at a

*Also at the University of Paris XI �Orsay�, France.
†Also at the University of Nevada, Reno.

PHYSICAL REVIEW E 73, 026402 �2006�

1539-3755/2006/73�2�/026402�8�/$23.00 ©2006 The American Physical Society026402-1

http://dx.doi.org/10.1103/PhysRevE.73.026402


finite angle� injection pulse. Injection is the result of the laser
beat wave produced when the backward injection pulse col-
lides with the trailing portion of the pump pulse. This con-
figuration has the advantages of being easier to implement in
comparison to the three-pulse CPI scheme and of requiring
less intensity in the injection pulse compared to the pondero-
motive injection scheme, since injection is the result of the
laser beat wave as opposed to the ponderomotive force of a
single injection pulse.

In this paper, a negative plasma density gradient is pro-
posed and analyzed as a method for enhancing the electron
beam quality in laser injection schemes. If a laser injection
scheme is operated close to threshold, electrons will be in-
jected into the region of the wake that is accelerating but
defocusing. To have a trapped electron bunch that is both
accelerated and focused, it is necessary to shift the bunch
forward in phase. This can be accomplished with a down-
ward density ramp. As the density decreases, the plasma
wavelength increases; thus, a relativistic electron will be
shifted forward in phase relative to the wake. This can shift
an electron from the defocusing to the focusing region of the
accelerating wake. In addition, if injection occurs on the den-
sity down-ramp, the trapping can occur more readily since
the phase velocity of the wake is lowered on the down-ramp.
Numerical examples are given based on a three-dimensional
�3D� particle tracking code for the specific case of the two-
pulse CPI method with density gradients.

The remainder of this paper is organized as follows. The
general concept of using density down-ramps is discussed in
Sec. II. The analytical expressions for the wakefield driven
on a density ramp are derived in Sec. III. Section IV presents
the numerical results, in which the motion of test particles
are tracked in 3D in the analytically specified fields of the
laser pulses and wakes. A discussion of the results is given in
Sec. V. Also included is an appendix that discusses beam
loading.

II. DENSITY DOWN-RAMPS

A density down-ramp can enhance the number of trapped
and focused electrons by two effects: �1� a decrease in den-
sity shifts the position of an electron forward in phase with
respect to the wakefield and �2� a decrease in density de-
creases the phase velocity of the wake, thus providing a
lower threshold for injection. Consider a change in density
from ni to nf �ni�nf� over a length Lt and assume that the
trapped electron and laser are all moving in the forward di-
rection �z� with velocity near c. The phases of the electron
before and after the transition are given by �i=kpi� and � f
=kpf�, respectively, assuming that the slippage between the
electron and drive laser pulse is small over Lt �� is approxi-
mately constant�, where �=z−ct is the position of the elec-
tron behind the drive pulse ��	0 behind the drive pulse� and
kpi=�pi /c and kpf =�pf /c are the plasma wave numbers
evaluated at ni and nf, respectively. The change in phase of
the electron after the density transition is 
�=�i−� f—i.e.,


� = �i�1 − �nf/ni�1/2� � �i�
n/2ni� , �1�

assuming 
n=ni−nf �ni. Hence, the change in density re-
quired to shift an electron forward in phase by a small

amount �e.g., 
��� /4� is 
n /ni=2�
� /�i�=2�
� /kpi��.
Note that rephasing becomes easier �a smaller 
n /ni is re-
quired� with increasing distance behind the driver �larger ����.
Hence, rephasing is more efficient for the three-pulse CPI
configuration than for two-pulse CPI, assuming the injection
point for three-pulse CPI is behind the first wake period.

If the injection �pulse collision� point was to occur on the
down-ramp �as opposed to prior to it�, then trapping could be
further enhanced due to the decrease in phase velocity of the
wake on the down-ramp. The wake phase velocity vp can be
calculated from the wake phase �=kp�z��z−ct� via vp /c
=−��� /�ct� / ��� /�z�. This gives

vp/c = 1/�1 + kp
−1�dkp/dz� , �2�

where dkp /dz= �kp /2n�dn /dz. Since �	0 behind the drive
pulse, the phase velocity decreases on a density down-ramp
�dn /dz	0�. Note that this effect becomes more pronounced
the larger the distance behind the driver. Thus, the reduction
in phase velocity due to the down-ramp is potentially more
effective for three-pulse CPI than for two-pulse CPI. Even-
tually, even in the absence of an injection pulse, the down-
ramp leads to wave breaking and injection for a sufficiently
large distance behind the pump pulse �7�, assuming that the
wake amplitude does not damp.

III. PLASMA RESPONSE

The cold fluid equations, describing the evolution of the
plasma density n, the normalized electron fluid momentum
u=p /mc, the normalized electrostatic potential �=e /mc2,
and the normalized vector potential a=eA /mc2, are given by

�n/�ct + � · �nu/�� = 0, �3�

��u − a�/�ct = ��� − �� , �4�

�2� = kp0
2 �n/n00 − n0�z�� , �5�

��2 − �2/�ct2�a = kp0
2 �n/n00�u/� + ���/�ct , �6�

where �= �1+u2�1/2, n0�z� is the initial density profile, kp0

= �4�n00e
2 /mc2�1/2 is the plasma wave number evaluated at

constant density n00=n0�0�, and �� �u−a�=0 has been as-
sumed along with the gauge condition � ·a=0.

These equations will be solved order by order with re-
spect to the small parameter �aL��1, which is the normalized
amplitude of the laser field. To first order, all quantities are
small except for u1�aL. The first-order quantities are given
by

�n1/�ct + � · �n0u1� = 0, �7�

��u1 − aL�/�ct = ��1, �8�

�2�1 = kp0
2 n1/n00, �9�

which can be combined to yield

�2�2�1/�ct2 + � · �kp
2���1 + �aL/�ct�� = 0, �10�
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where kp
2 =kp0

2 n0�z� /n00. Since the primary contributions to
the first-order quantities are on the fast time scale—i.e., �1
�exp�ik�z−ct��, where k is the laser wave number—the
first-order quantities scale as �1�kp

2aL / �k4r0Lt�, n1 /n00

�aL / �k2r0Lt�, �u1−aL�z�kp
2aL / �k4r0Lt�, and �u1−aL��

�kp
2aL / �k5r0

2Lt�, where Lt is the scale length of the axial
density transition, �kp

2 /�z�kp
2 /Lt, and r0 is the scale length

of the transverse gradient. Since k /kp�1, kLt�1, and kr0
�1, all first-order quantities will be neglected except for
u1�aL.

To second order,

�n2/�ct + � · �n0u2� = 0, �11�

��u2 − a2�/�ct = ���2 − aL
2/2� , �12�

�2�2 = kp0
2 n2/n00, �13�

��2 − �2/�ct2�a2 = kp
2�z�u2 + ���2/�ct , �14�

along with � ·a2=0. These equations can be combined to
yield

��2/�ct2 + kp
2� � �2 − kp

2 � aL
2/2 = ��2 − �2/�ct2 − kp

2��a2/�ct .

�15�

In both the uniform plasma limit �kp
2 =kp0

2 � and the 1D limit
���=0�, a2=0.

The above equation can be solved in the limits kpLt�1
and kpr0�1 by assuming an ordering ��2�� �a�2�� �az2�. As
is shown below, these terms scale as a�2��2 / �kp

2r0Lt� and
az2��2 / �kp

3r0
2Lt�. This last scaling follows from

� ·a2=0—i.e., az2�a�2 / �kpr0�. In the following, an averag-
ing over the fast laser frequency is assumed such that the
time and axial derivatives scale as � /�ct�� /�z�kp. Taking
the axial component of the above equation yields, to leading
order,

� �2

�ct2 + kp
2	 ��2

�z
� kp

2�z�
�

�z
�aL

2

2
	 , �16�

where a term of order kp
3az2��2 / �r0

2Lt� has been neglected.
This determines the axial wakefield Ez���2 /�z, neglecting
terms of order 1 / �kp

2r0Lt� or higher. To determine the electro-
magnetic contribution to the wake �a�2�, the transverse com-
ponent of Eq. �15� is operated on by � /�z, which yields

�

�z

��2 −

�2

�ct2 − kp
2	 �ax2

�ct
� = � �kp

2

�z
	 �

�x
��2 −

aL
2

2
	 .

�17�

Scaling the operators in the above equation implies ax2
��2 / �kp

2r0Lt�. Hence, the transverse electric field of the
wake is given to leading order by Ex���2 /�x, where terms
of order 1 / �kpLt� or higher are neglected.

Consider the wakefields being driven by a forward-going
pump laser pulse �i=0� and a backward-going injection laser

pulse �i=1�, the fields of which are described by the normal-
ized vector potentials ai=eAi /mec

2. The wake driven by the
beating of the pump and injection pulse will be neglected, as
discussed in Refs. �16,17�. The transverse laser field �linearly
polarized in the x direction and propagating along the z axis�
is given by �20�

axi�r,�i� = âi�r,�i�cos �i, �18�

with

âi�r,�i� = ai�ri/rsi�exp�− r2/rsi
2 �sin���i/Li� , �19�

for −Li	�i	0 and zero otherwise, where �0=z−�g0ct
�forward-comoving coordinate�, �1=−z−�g1ct �backward-
comoving coordinate�, �gi=�i is the linear group velocity,
��i=�i

−1 is the linear phase velocity, �i= �1−�p
2 /�i

2

−4/ki
2ri

2�1/2 is the plasma index of refraction, �i=ki�z
−��ict�+�ir

2 /rsi
2 +�i−tan−1�i is the phase, ki=�i / ���ic� is

the wave number, �i is the frequency in vacuum, rsi�z�
=ri�1+�i�z��1/2 is the spot size, ri is the spot size at waist
�here chosen to be z=Zfi

�, �i�z�= �z−Zfi
�2 /ZRi

2 , ZRi
=ki�iri

2 /2
is the Rayleigh length, Li is the pulse length, and a constant
has been omitted in the definition of �i that represents the
initial position and phase of the laser pulse. The axial com-
ponent of the laser field is specified via � ·ai=0. Keeping
only the leading-order contributions gives

azi�r,�i� � 2x�âi�r,�i�/�kirsi
2 ���sin �i − �i cos �i� . �20�

Included in the simulations presented below are the wake-
fields generated by both the pump and injection laser pulses.
For linear polarization and assuming kpr0�1 and
kpLt�1—i.e., a large laser spot and a slowly varying density
transition—the normalized electric field of the wakefield
kp0Ei /E0=−��2i is given by

��2/��i
2 + kp

2�z��kp0Ei/E0 � kp
2�z� � âi

2/4, �21�

where E0=mc2kp0 /e is the cold nonrelativistic wave-
breaking field evaluated at fixed density n00 and independent
variables �i and z have been used. Note that a time averaging
has been performed over the fast laser oscillation �laser
frequency�—i.e., �âi

2cos2�i= âi
2 /2. The axial component of

Eq. �21� follows directly from Eq. �16�, whereas the trans-
verse component represents the leading-order contribution to
E�, neglecting corrections of order 1 / �kpLt� or higher. As-
suming that âi

2 is a slowly varying function of z—i.e.,
��âi

2 /��i�� ��âi
2 /�z�—the solution to Eq. �21� is

Ei�r,�i�/E0 = − �kp�z�/4kp0��
0

�i

d�i� sin�kp�z���i − �i���

���/��i� + ���âi
2�r,�i�� , �22�

where a term proportional to �âi
2 /�z has been neglected in-

side the integrand, which neglects additional terms of order
Li /ZRi�1/ �kkpr0

2��1. Specifically, Eq. �21� yields the elec-
tric field generated inside the pulse �−Li	�i	0�,
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Eri

E0
=

ai
2

2

ri
2r

kp0rsi
4 e−2r2/rsi

2

�
1 +
�4�2/kp

2Li
2�cos�kp�i� − cos�2��i/Li�
�1 − 4�2/kp

2Li
2� � , �23�

Ezi

E0
=

kp

kp0

ai
2

8

ri
2

rsi
2 e−2r2/rsi

2
 �4�2/kp
2Li

2�sin�kp�i� − sin�2��i/Li�
�1 − 4�2/kp

2Li
2� � ,

�24�

and behind the pulse ��i	−Li�,

Eri

E0
= ai

2 ri
2r

kp0rsi
4 e−2r2/rsi

2� 4�2

kp
2Li

2	 sin�kp��i + Li/2��sin�kpLi/2�
�1 − 4�2/kp

2Li
2�

,

�25�

Ezi

E0
= −

kp

kp0

ai
2

4

ri
2

rsi
2 e−2r2/rsi

2� 4�2

kp
2Li

2	 cos�kp��i + Li/2��sin�kpLi/2�
�1 − 4�2/kp

2Li
2�

.

�26�

For the resonant case Li=�p, which corresponds to a condi-
tion close to maximum wakefield generation, inside the
pulse,

Eri

E0
=

ai
2

2

ri
2r

kp0rsi
4 e−2r2/rsi

2
�1 − cos�kp�i� − �kp�i/2�sin�kp�i�� ,

�27�

Ezi

E0
= −

kp

kp0

ai
2

8

ri
2

rsi
2 e−2r2/rsi

2
�sin�kp�i�/2 − �kp�i/2�cos�kp�i�� ,

�28�

and behind the pulse,

Eri

E0
=

�ai
2

2

ri
2r

kp0rsi
4 e−2r2/rsi

2
sin�kp�i� , �29�

Ezi

E0
= −

kp

kp0

�ai
2

8

ri
2

rsi
2 e−2r2/rsi

2
cos�kp�i� . �30�

Note that for high laser intensities ��ai��1�, this model
becomes inaccurate. To describe the nonlinear regime in 3D,
as well as other nonlinear effects such as beam loading, re-
quires self-consistent simulations �e.g., particle-in-cell
codes�, which is beyond the scope of this paper.

IV. SIMULATION RESULTS

The effect of density down-ramps on the bunch quality in
the colliding pulse injector was studied using a 3D particle
tracking code, which evolves the motion of a group of test
particles in analytically specified fields. Included in the simu-
lations are the electromagnetic fields of the laser pulses, as
determined from the vector potentials given by Eqs.
�18�–�20�. The wakefields from the pump and injection laser
pulses are given by Eqs. �23�–�26�. The ion density profile is
assumed to be of the form

n0�z�
n00

= 1 −
�t

2

1 + tanh� z − zt

Lt
	� , �31�

where n00 is the ion density before the density drop-off �z
	zt�, zt is the location of the transition, and �t=
n0 /n00 is
the relative change of density.

In the following simulations, the plasma was modeled by
a group of test electrons initially at rest and loaded randomly
in a three-dimensional spatial region of length �p and trans-
verse radius �p /2, uniformly about the z axis, corresponding
to a volume V0=��p

3 /4. This spatial region was chosen to be
ahead of the pump laser pulse and timed with respect to the
initial position of the injection pulse such that, when the two
pulses collide, the test electrons fill the entire region in which
trapping may occur. After the collision, various properties of
the trapped electron bunch were monitored as a function of
propagation time, such as the mean energy, the energy
spread, the root-mean-square �rms� bunch length, rms bunch
radius, and the trapping fraction. Here, the trapping fraction
is defined as Nb /Ns, where Nb is the number of test electrons
in the bunch and Ns the total number of test electrons in the
simulation. A quasi-1D configuration with ri��p was cho-
sen, such that most of the injected electrons, although in a
defocusing region of the accelerating wave, will only slowly
depart transversely from their initial on-axis location. A den-
sity down-ramp will then rephase those electrons onto a
trapped and focused orbit. This is shown in Fig. 1, where the
cold fluid orbit and trapped and focused orbit are both shown
for an initial density n00 and another density 30% smaller.
Note that the focusing region has been extended farther be-
hind the pump pulse. The simulations were carried out for
normalized laser-plasma parameters a0=1, �0 /�p0=50, and
L0=�p0 or 9�p0 /8, �1 /�p0=50, and L1=�p0 /2. Parameter
scans were performed for the injection pulse normalized vec-
tor potential a1 and for the parameters corresponding to the
density ramp such as the length Lt, the center of the transi-
tion zt, and the relative change of density �t.

FIG. 1. �Color� Phase-space plot showing cold-fluid orbit for
n0 /n00=1 �blue solid line�, n0 /n00=0.7 �blue dot-dashed line�,
trapped and focused orbit for n0 /n00=1 �red solid line�, n0 /n00

=0.7 �red dot-dashed line�, and orbit of an electron in a trapped but
defocusing region of the wakefield for n0 /n00=1 �black solid line�,
with laser parameters L0=�p0 and a0=1.
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Figure 2 shows the resulting electron beam characteristics
produced in a uniform plasma without the use of a plasma
density gradient �16,17�. The total charge in the bunch Q was
estimated from the trapping fraction f tr �the fraction of the
initial electrons that remain on trapped and focused orbits�
by Q=en0f trV0. The bunch density was calculated assuming
a square beam profile using the relationships between the
length, radius, and corresponding rms quantities; e.g., Lb
=2�3�z is the full beam length, �z the rms beam length, rb
=2�r the beam radius, and �r the beam rms radius. As shown
in Fig. 2, the typical value of the charge injected is on the
order �4 pC. Note also that for high bunch charge, beam
loading may become important �see the Appendix for further
details�. For a uniform beam profile nb�r ,��=nb��rb−r���
−�����+Lb� of radius rb and length Lb, where � is a step
function, the amplitude of the perturbed density and the axial
electric field of the bunch-induced wake is found to be at the
back of the bunch �16,17,21,22�,

�n/n0 � − �kpLb�2�nb/n0�/2, �32�

Ez/E0 � kpLb�nb/n0�FR�r� , �33�

assuming kpLb�1, �n /n0�1, and Ez /E0�1, where the ra-
dial profile function is FR�r�=1−kprbK1�kprb�I0�kpr� for r
	rb. Here I0 and K1 are modified Bessel functions. For a
narrow beam kp

2rb
2�1, and along the axis, FR�r=0�

��0.308−0.5 ln�kprb��kp
2rb

2. For kpLb�nb /n0��1 the linear
wake approximation becomes inaccurate and nonlinear
methods must be used. Another parameter of interest is a
comparison of the wakefield intensity produced by the laser
pulse with respect to the wake induced by the beam itself.
The latter is required to be much smaller. Using Eq. �30�
together with Eq. �33� yields an approximated ratio

�l �
8

�

kpLb

a0
2

nb

n0
FR�0� � 1, �34�

which is valid for a laser beam close to the resonant condi-
tion L��p. For the case of Fig. 2 beam loading is a negli-
gible effect.

Figure 3 shows the amount of charge in the trapped and
focused region of the plasma wave as a function of the den-
sity down-ramp center zt for the laser-plasma parameters:
a0=1, �0 /�p0=50, L0=9�p0 /8, a1=0.5, �1 /�p0=50, L1
=�p0 /2, Lt=�p0, �t=30%, and �p0t=147 after injection. Here
�p0 corresponds to the plasma wavelength prior to the den-
sity transition. The total charge is increasing temporarily up
to a plateau region reached at about kp0zt=4�. As mentioned
above, Fig. 1 shows the phase shift of the trapped and fo-
cused region after passing through the density transition �ac-
cording to Eq. �1�� as well as a typical orbit of an electron
lying in the defocusing region. The latter electrons will cir-
culate along this path towards the high-energy region and
will cross the extended focusing region of the plasma wave
at some later time after injection. Delaying the density tran-
sition until those electrons reach the phase � f �2� will al-
low for rephasing of maximum amount of charge. In Fig. 3,
a charge per bunch enhancement by a factor of �50 is
shown. In this case beam loading may become important;
e.g., the bunch-induced wakefield Ez /E0 becomes compa-
rable to the wake generated by the drive laser pulse alone.
Nonlinear beam loading will most likely reduce the bunch
quality �fraction trapped, average energy, etc.�. Note that the
oscillation shown in Fig. 3 for the electric field Ez /E0 as well
as for the beam density kpLb�nb /n0� may be attributed to the
extra focusing provided to the rephased electrons by the
plasma wave.

Figure 4 plots the parameter kpLb�nb /n0� �which is used as
an indicator for the estimation of the validity of the linear
regime in the calculation of beam loading�, the electric field
Ez /E0 induced by the electron beam alone, and the charge
trapped as a function of the injection laser strength a1 for the
same laser-plasma parameters as of Fig. 3 except for kp0zt
=12�. The latter correspond to the region of Fig. 3 where
maximum trapping is achieved. Comparing Fig. 2 with Fig. 4
shows a lower trapping threshold as expected �a1 min�0.35
versus 0.15�. The electron beam remains compact as shown
in Fig. 5. The rms bunch radius �r and rms bunch duration �z
are on the order of a few percent of the plasma wavelength
�p0. For a plasma wavelength on the order of 10 �m, this
implies that 	1 fs �i.e, attosecond scale� bunches can be
produced. The bunch normalized emittance is approximated

FIG. 2. �Color online� Bunch charge Q in pC �right vertical axis,
stars�, kpLb�nb /n0� �left vertical axis, squares�, and normalized axial
electric field Ez /E0 �left vertical axis, points� generated by the elec-
tron bunch alone �here the laser contribution is not included� versus
a1 with �0=0.8 �m, L0=9�p0 /4, r0=�p0=40 �m, a0=1, homoge-
neous plasma—e.g., no density ramp and ct=47kp0

−1�300 �m after
injection.

FIG. 3. �Color online� Bunch charge Q in pC �right vertical axis,
stars�, kpLb�nb /n0� �left vertical axis, squares�, and normalized axial
electric field Ez /E0 �left vertical axis, points� generated by the elec-
tron bunch alone versus zt with �0=0.8 �m, L0=9�p0 /4, r0=�p0

=40 �m, a0=1, a1=0.5, Lt=�p0, �t=30%, and ct=147kp0
−1

�935 �m after injection.
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as ��=�0�0��x2�x�2���x2�ux
2, where u0=�0�0��0 is

the axial momentum of the electron bunch. For the case of
Fig. 5, the emittance is typically small—e.g., �p0=40 �m
�n00=6.9�1017 cm−3�—and implies ��	0.8 mm mrad for
an average kinetic energy of �23 MeV. The energy spread

� /� is on the order of a few percent.

A 1D analysis of the dephasing length �1� �which is the
typical length required for a trapped electron to outrun the
plasma wave, resulting in maximum energy gain� gives Ld
��p

2�p, where �p= �1−�p
2�1/2 is the plasma wave relativistic

factor and �p��g0 is the plasma wave normalized phase

velocity, which is approximately equal to the laser group
velocity in the linear regime. For an underdense plasma
�p /�0�1, �p��0 /�p which corresponds to Ld�10 cm for
n0�7�1017 cm−3. Furthermore, in 3D, the Rayleigh length
ZR�k0r0

2 /2 �which is the characteristic distance for laser dif-
fraction� must be compared to the dephasing length and is
found to be on the order 4 cm. The beam parameters shown
in Fig. 5 are evaluated only after a propagation distance on
the order 1 mm. Therefore, the beam quality is expected to
improve over longer acceleration distances �increase of ki-
netic energy, lower energy spread, etc.�, up to the limits im-
posed by dephasing and/or diffraction.

Figure 6�a� plots the parameter kpLb�nb /n0�, bunch charge
Q, and bunch-induced axial electric field Ez /E0 as a function
of the density transition length Lt. Figure 6�a� shows a small
effect on the beam quality; e.g., the trapping fraction remains
mainly unchanged. The small increase in bunch radius to-
gether with the emittance �Fig. 6�a�� can be explained by the
fact that a long density transition implies that the electron
beam remains for a longer period of time in a defocusing
phase. The requirement on the transition length Lt is to be
smaller than the typical distance it takes an electron to outrun
the plasma wave. For the laser-plasma parameters used in
this paper, ZR	Ld and kp

−1�Lt�ZR. This demonstrates the
feasibility of using negative plasma density gradients in
laboratory experiments as a means for rephasing trapped but
unfocused electrons.

Figure 7 shows the trapped bunch charge and correspond-
ing beam loading parameters as a function of the relative

FIG. 4. �Color online� Bunch charge Q in pC �right vertical axis,
stars�, kpLb�nb /n0� �left vertical axis, squares� and normalized axial
electric field Ez /E0 �left vertical axis, points� generated by the elec-
tron bunch alone versus a1 with �0=0.8 �m, L0=9�p0 /4, r0=�p0

=40 �m, a0=1, zt=240 �m, Lt=�p0, �t=30%, and ct=147kp0
−1

�935 �m after injection.

FIG. 5. �Color online� Trapped bunch parameters versus a1 �for
two collinear, counterpropagating laser pulses with equal polariza-
tion, a0=1, �0 /�p0=50, L0=9�p0 /8, �1 /�p0=50, L1=�p0 /2, kp0zt

=12�, kp0Lt=2�, �t=30%, and ct=147kp0
−1�. �a� Trapping fraction

f tr �right vertical axis� and relative energy spread 
� /� �left vertical
axis�. �b� Bunch length �z /�p0 �left vertical axis�, rms radius �r /�p0

�left vertical axis�, and normalized transverse rms emittance �� /�p0

�right vertical axis�.

FIG. 6. �Color online� �a� Bunch charge Q in pC �right vertical
axis, stars�, kpLb�nb /n0� �left vertical axis, squares�, and normalized
axial electric field Ez /E0 �left vertical axis, points� generated by the
electron bunch alone. �b� Bunch length �z /�p0 �left vertical axis�,
rms radius �r /�p0 �left vertical axis�, and normalized transverse rms
emittance �� /�p0 �right vertical axis� versus Lt for the laser-plasma
parameters: �0=0.8 �m, L0=9�p0 /4, r0=�p0=40 �m, a0=1, a1

=0.5, zt=280 �m, �t=30%, and ct=147kp0
−1�935 �m after

injection.
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change of density �t for the laser-plasma parameters �0
=0.8 �m, L0=r0=�p0=40 �m, a0=1, a1=0.2, zt=240 �m,
Lt=40 �m, and ct=147kp0

−1�935 �m after injection. Note
that a1=0.2 is found to be close to the trapping threshold for
�t�25%, and by increasing �t, the trapped charge in the
bunch became as high as Q=20 pC for �t=60%. Conse-
quently, for such values of �t, the trapping threshold is lower
than a1=0.2, which is an order of magnitude smaller that the
laser strength required in ponderomotive injection schemes
�11�. Another possible interesting regime would be to lower
the drive pulse strength instead of the injection pulse. Using
kpL0=kpr0=kpr1=2� along with a1=0.5 and kpL1=4� �a
length far from the resonant condition in order to minimize
the injection wake which could interfere with the wake gen-
erated by the drive pulse itself for the case of a modest value
of a0�, combined with a long taper length kpzt�5� �to allow
maximum injection; e.g., see Fig. 3� and �t=30%, may pro-
vide a threshold as low as a0=0.8.

V. CONCLUSION

Plasma density down-ramps have been proposed as a
method for improving electron bunch quality in laser injec-
tion schemes. A decrease in density implies an increase in
plasma wavelength, which can shift a relativistic electron
from the defocusing to the focusing region of the accelerat-
ing wakefield. Also, a decrease in density leads to a decrease
in wake phase velocity, which can lower the trapping thresh-
old. The specific method of two-pulse CPI was examined
using a 3D test particle tracking code. Various properties of
the trapped and focused bunch were studied as a function of
the ramp and laser parameters. For example, it was found
that a density down-ramp of 30% change in density with Lt
=�p increased the trapped and focused charge from 0 pC �no
ramp� to 25 pC �with ramp� for an injection pulse intensity
of a1=0.3 and from 	2 pC to 100 pC �which is near the
beam loading limit� for a1=0.5. Furthermore, no degradation
of overall bunch parameters was observed compared to the
uniform plasma case. The bunch duration was found to be
typically on the order of a few percent of the plasma wave-
length, which implies formation of attosecond electron

bunches for short plasma wavelengths. The trapped bunch
quality was found to depend only weakly on the length of the
ramp, indicating that the use of experimentally feasible
ramps with Lt��p can be effective in enhancing the trapped
bunch. Since the use of down-ramps increases the number of
trapped and focused electrons, the overall trapping threshold
for electron injection into the plasma wave is lowered, which
allows the production of trapped bunches with lower-
intensity laser pulses.

One limitation of the approach used in this research is that
it relies on test particle simulations in which the fields �lasers
and wakes� were specified analytically. Specifically, analyti-
cal expressions were used for the wakefield valid to second
order in the normalized laser field ai

2. This model becomes
inaccurate as ai

2 approaches and exceeds unity, and self-
consistent simulations, such as using particle-in-cell or fluids
codes, are required in this nonlinear regime. A second ap-
proximation used in the test particle simulations is the ne-
glection of the wake generated by the trapped bunch—i.e.,
neglect of beam loading. These test particle simulations in-
dicate that the colliding pulse trapping mechanism is rather
robust; i.e., it is easy to trap electrons up to beam loading
limit. Again, to fully assess the utility of the colliding pulse
injection in the high-charge limit, self-consistent simulations
are required.

It should be noted that although this study was restricted
to the two-pulse colliding-pulse configuration, rephasing and
enhancement of the trapped bunch quality by using density
transitions is a general method that can be applied to a wide
variety of plasma-based accelerators. In general, the relative
phase of the bunch in the wake can be repositioned by ad-
justing the plasma density. As discussed above, the change in
density required to shift an electron forward in phase by a
small amount is 
n /ni=2�
� /kpi��. Note that rephasing be-
comes easier �a smaller 
n /ni is required� with increasing
distance behind the driver �larger ����. Hence, rephasing is
more efficient for the bunches trapped in buckets further be-
hind the driver. Typically, only a small change of density is
required to shift the phase a significant fraction of a plasma
period. Since the wake amplitude is a relatively weak func-
tion of density, rephasing can be accomplished by small
changes in the density without significantly degrading the
accelerating field of the wake. Furthermore, provided that the
plasma density transition occurs over a length �or time� that
is short compared to the dephasing length of the electron in
the wake �or the synchrotron period for a trapped electron in
the wake�, the rephasing �shifting of the wake relative to the
electron� occurs virtually instantaneously with respect to the
electron dynamics. Since the dephasing length of a relativis-
tic electron in a plasma wake is relatively long, Ld��p

3 /�2,
experimentally producing a density transition with Lt�Ld is
readily achievable, which in turn leads to a near-
instantaneous rephasing of the electrons in the wake.
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APPENDIX: BEAM LOADING CONSIDERATIONS

Beam loading, whereby the trapped electron bunch sig-
nificantly alters the accelerating wakefield, can degrade the
quality of the electron bunch. Beam loading is neglected in
the particle tracking code. To estimate the effects of beam
loading, the wakefield generated by the trapped electron
bunch propagating in an initially uniform plasma can be cal-
culated and compared to the wakefield driven by the pump
laser pulse. Using linear wakefield theory, the normalized
density perturbation �n /n0�1 and normalized axial electric
field Ez /E0�1 driven in an initially uniform plasma by a
short electron bunch �nb /n0 drive term� is given by
�16,17,21,22�

� �2

��2 + kp
2	�n

n0
= − kp

2 nb

n0
, �A1�

���
2 − kp

2�
Ez

E0
= − kp

�

��

�n

n0
, �A2�

where the drive bunch and the resulting wakefields are as-
sumed to be functions of only the variables �=z−ct and r�.
Solving the system of equations �A1� and �A2� for a cylin-
drically symmetric drive nb yields

�n

n0
= − kp�

�

�

d�� sin�kp�� − ����
nb����

n0
, �A3�

Ez

E0
= − kp

3�
�

�

d���
0

�

dr�r� cos�kp�� − ����

�I0�kpr	�K0�kpr��
nb�r�,���

n0
, �A4�

where I0 and K0 are the zeroth-order modified Bessel func-
tions of the second kind and r	 �r�� denote the smaller
�larger� of r and r�, respectively. For a uniform beam profile
nb�r ,��=nb��rb−r���−�����+L� of radius rb and length L,
where � is a step function, the profile of the perturbed den-
sity and the axial wakefield are inside the bunch −L���0,

�n/n0 = − 2�nb/n0�sin2�kp�/2� , �A5�

Ez/E0 = − �nb/n0�FR�r�sin kp� , �A6�

and behind �	−L,

�n/n0 = 2�nb/n0�sin�kpL/2�sin kp�� + L/2� , �A7�

Ez/E0 = − �nb/n0�FR�r��sin kp� − sin kp�� + L�� , �A8�

where the radial profile function is

FR�r� = �1 − kprbK1�kprb�I0�kpr� , for r 	 rb,

kprbI1�kprb�K0�kpr� , for r � rb,
� �A9�

with I1 and K1 first-order modified Bessel functions. Assum-
ing kpL�1 yields, at the back of the bunch,

�n/n0 � − �kpL�2�nb/n0�/2, �A10�

Ez/E0 � kpL�nb/n0�FR�r� . �A11�
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